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The problem of motion stability relative to a part of the varidbles cl, 27 is 
examined. The method for solving this problem, proposed in [3] for linear 
stationary systems, is extended to solving nonlinear problems. such an app- 
roach permits the obtaining of stability and instability criteria for motion rel- 

ative to a part of the variables in the linear approximation in those cases when 

the well-known results in [4,5] are inapplicable; it also yields a means for 
solving the problem posed here of absolute motion stability relative to a part 

of the variables for nonlinear controllable systems. Examples of nonlinear sys- 
tems are cited, showing that the stability domain for separately specified co- 

ordinates can be wider than the stability domain for all the coordinates charact- 

erizing the system’s state. 

1. We consider the system of ordinary differential equations of perturbed motion 

dxildt = Xi (~1, . . ., x~), i = 1, . . ., n (1.1) 
W\‘P- take up the question of the stability of the unperturbed motion Xi = 0 (i = 

1 9 * * -7 n) relative to x1, . . ., xrn(m>O, n=m+ p, p>w We den- 

ote these variables yi = Xi (i = 1, . . ., m) and the ones remainingsj = S,+j 
(j = 1, . . .) P) [l, 21. Let the functions Xt be power series in powers of yi 

(i = 1, . . ., m) and Zj (i = 1, . . ., p) , converging in the domains 

)yiI\(h, i=l, ..*., ?TL; IZjI<H<m, j=i, . . . . p (1*2) 

where h and H are some constants. Now the Eqs. (1.1) of perturbed motion are 

Here aik, bilr Cjkr dj, are constants, Yi and Zj are functions of the variables 

Yl, * * *, Ybl, Zl, * * *, Zpr which in domains (1.2) are expanded into series in pow- 

ers of these variables, where the expansions begin with terms of order no lower than 

the second. The variables zr, . . ., zp are always bounded; this assumption is the 

initial one in the investigation of system (1.3) in all the case considered in Sects. 2 
and 3. 
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We introduce the notation 

Then the equations of linear approximation of system (1.3) are 

y’ = Ay + Bz, z’ = Cy + Dz (1.4) 

Y = b/l7 - * .,Ym), z = (21, . . . , zp) 

We consider the matrix K = (B’, D’B’, . . .,DIp-lB’), where B’ and D’ are 

the transposes of matrices B and D . kt the rank of matrix K equal N. It 

was shown in [S] that the question of the stability of the unperturbed motion of system 
(1.4) relative to variables y,, . . ., y, is equivalent to the same question for the 

specially constructed system 

Y’ = Ay + B,P, P’ = C,Y + D,P 

oforder (m+N), N\<p, where p = Lz is a matrix whose rows are the line- 
arly-independent columns of matrix K; B,, C,, D, are constant matrices of approp- 
riate dimensions. Hence we see that the question on the stability of the unperturbed 
motion of system (1.3) relative to a part of the variables y,, . . .,y,,, in the linear 

approximation can be considered in the following class of systems (we shall stay with- 

in the framework of the notation adopted and, as before, consider the variables y,, 

* - .,Y, to be those relative to which the stability of the unperturbed motion is be- 
ing studied): 

dY, m -= c @kYk $ Y~(YI, - - . , Ymr 21,. . . , Zp). i = 1, . . . , m (1.5) 
at 

k=l 

~~=~cjkYk+edi,zi+Zj(y~,...,ymlz~,...,Ip)l j=l,...,P 

k=l 1-l 

A criterion was obtained in [4] for the asymptotic stability of the unperturbed motion 

of system (1.5) relative to y,, . . . , y, in the linear approximation. An instability 
criterion was obtained in [5] and the critical case of one zero root was considered. 
The results mentioned were obtained under the following three constraints: 

1) yi to7 * * .,o, z-1, . . .,zp) E 0, i =I, . . .,m 

2) 1 Yx (Yl, - * . 7 Ym7 Zl7 - . - t Zp) 1 < 5 kj 1 Yj 11 i-l,...,m 
j=l 

where hij are sufficiently small positive constants (under the assumptions made con- 
cerning functions Yi the condition 2 assumes the terms linear in y,, . . .,y, are 
absent in functions Yi ); 

3) the variables zl, . . . , zp of system (1.5) are always bounded, i. e. ,I Zj 1 < 
H<oo, j = 1,. . .,p. 

In the present paper, for special cases of system (1.5), we have obtained stability 
and instability criteria for the unperturbed motion relative to variables yl, . . ., y, 
in the linear approximation, which do not presume constraints 1 and 2 on the functions 

Yi (I/r, - - -7 Yrn, Zi9 * - -7 $3). 
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2. Let the Eqs. (1.3) of perturbed motion be 

$= toik?j& +~biiz,+Y,(y,,...,y,.I~,...,z,), i zz l,...,?n (2.1) 

Fi==l l=l 

dz. p 
3= 
dt c 

djrzl 

I=1 

We assume that 

Yi (0, . . ,( 0, Zl, . . _, ZJ = Yi” (Z$, . . ., zp) = (2.2) 

u,i (21, . . ., zp) + . . . + lJJ (Zl, * . .( zp), i=l ,a * *9 m 

where U,” (zl, . . ., zp) is a homogeneous form in variables zl, . . ,, z, of order 

E, I< rr r is a finite number. From functions yi (Yl, * * *, Y,, z1, * * *, zp) 
we pick out the terms linear in y,, . . ., y,. We take it that 

(2.3) 

,q* (21, . . .) zp) = op (21, . . ., zp) + * . f + ugj (21, * . .t zp)) 
_ . . 

Here UC’ is a form of the same kind as Ut (zr, , . ., zP), I\( s, s isafintte 

number. Thus, the functions Yi (yl, . . . , gm, zlr . . . , zp) in system (2.1) have 
the form 

m 

Yi t!h* ~‘~tY~rzlt~~~rzp)~Yio(~~~~~~~Zp)+ ~yjFij"(Z~,...,Zp)+ (2.4) 

j==l 

Yi**(y~, . . . . ynl, zl, . . . ,zP), i = 1,. ..,m 

where Yi*+ (yl, . . ., Ym, zl, . . ., zp) satisfy conditions 1 and 2, while the fun- 

ctions Yi * (z~, . . ., z~,) and Pij* (zr, . . ., zp) satisfy conditions (2.2) and 

(2.3). 
Let us show that the question of the stability of the unperturbed motion of system 

(2.1) relative to yI, . , ,,gm in the linear approximation can be reduced to that 

of the stability in the linear approximation of a specially chosen system for which 

the conditions is [4,5] are fulfilled, To do this we take the following equations 

~_e~i~~~+~b~~~~i~Y~~z~..‘*,~~,. 
(2.5) 

dZj __ r’ -_ 
dt z: 4rz, 7 j= l,...,p 

I=1 

as the first-approxi?ation system for Eqs. (2.X). We introduce the new variables 

~“1’) = ?zl bi,z, +- Uzi (qt . . . , zp) + . . . + I!I,.~ (z,, . . . , zp) (2.6) 
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d? = olij’ (217 . - . , Zp) + . . . + tf?fj’ (zl, . . . , zp); i, j = 1, . . . , M 

Since Uli and glii are 1 -&order homogeneous forms in the variables Zll * . 
. , zpr they can be written as 

u,i = 2 
al+...+ap=Z 

q~-~apzp’z~. . . ~2 

0 ii _ 
1 -_ z 

al+...+ap=Z 
q~“‘aPZ~zaa,. . . 22 

D e f i n i t i o n. ‘The two collections of numbers (a,, . . ., aU) and (a’i, . 

* *t 01~‘) are said to be distinct if C.Q # ai’ for even one i. 

Let Nr be the number of distinct collections (a,, . . ., ap) such that al -I- 

+ a, = 1. Then with form Ut we associate the vector (qill, 2 
. . . $1 , * * 

-7 qilN’), Le. s we associate the vector Q&l) with the new variable ~$1) i 

pi(l) + QiM = 

(b. 11, * - -7 bipyqillly - m .,qillNl, . a -7 qi,‘ly . . .) qi:Nr) 

Analogously we associate the vector Qil@) with the new variable vii(*) : 
2% clij”’ + Qij(2) = (qij121, . . .,qijl 7 m . -7 QijsfL1, m e v,qijs2Ns) 

We assume that vectors Q&l) and Qij") are linearly independent ( otherwise, we 
consider those among them that are linearly independent). Two cases are possible 
with the thus-introduced new variables. 

F i r s t c a s e. System (2.5) is reduced to the form 

‘Yi 
-= 

dt 2 uik.yh. t pp + 2 y&’ 
k=l j=l 

d$) _ m m 

dp$ m m 

-= 
dt c Lc$P + c Z(2) (2) 

WePIe 7 i,j,v,y = l,...,m 
l=l 2, e=l 

(2.7) 

In what follows (2.7) will be called the system of jr -form of the original system (2.5). 
It is obvious that the behavior of the variables characteriting system (2.7) completely 
describes the behavior of variables Y1, . . ., y, of system (2.5). 

second case. System (2.5) is not reduced to the system of p -form, i. e. 
it appears as 

dYi m 

c 
oikYk + PI” + 2 Yjp!f’ 

(2.8) - =x 
dt 

f=l j=l 
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dptl) 
3 = up* (21’ * . . ) zp) + . . . + u,j* (Zl, . at . . , $1 ) 

dl”w 
dt= ~~*h,...,zp)+ ...+~~Y*(z~ ,..., zp); i,j,v,y=l,.,., rn 

dzg P 

dt= c &rzp, 8= I,...,p 
I=1 

Then once more we introduce the new variables 

Fi(‘) = urj* (21, . . .) zp) t- . . . + u,3* (21, , . .) zip) (2.9) 

&d2f = u,*y* (21, * * ., zpf +- . . . + usw* (z1: . . . zp) 
i, 6, y = 1, . * .) m 

where we choose only those of variables (2.9) whose corresponding vectors 
and @,,,(s) 

Q,+l) 
cannot be represented in terms of Q $1) and Qi j(2) (i, j = 1, _ . . , m). 

It can be shown that by continuing this procedure, we can always come to a system 
of l_r -form of system (2.5) at a finite step of repetition of the reasoning. Indeed, 
this can always be done by In~~ucing variables (2.6), (2. 9JL,. , . _ . in such number 
that the corresponding pearly-independent vectors Q,(l), Qj(') and Qiifz), Qevf@ 
form nonsingular square matrices. 

We note that although the dimension of the P -form equations can exceed that 
of the original system, the stability of the original system (2,5), relative to all vari- 
ables will not, in general, follow from the stability of the unperturbed motion of the 
system of p-form, as is true for linear stationary systems when the dimension of the 
system of l.r -form equals that of the original systeffl[3]. 

The two theorems that follow stem from the reasonings presented, as well as from 
the results in [4,5]. 

T h e o r e m 1. If all the eigenvalues of the linear part of the p -form equa- 
tions of system (2,5) have negative real parts, then the unperturbed motion of system 
(2.1) is asymptotically stable relative to yl, . . ., .h. 

T h e o r e m 2. If among the eigenvalues of the linear part of the P -form 
equdtiom of system (2.5) there is even one with a positive real part, then the unpert- 
urbed motion of system (2.1) is unstable relative to y,, . . . , $%a- 

3, Let the Eqs. (1.3) of perturbed motion be of the form 

k=l 

i =I ,,.,, m (3.1) 
1=t 

dzj 
P 

dt - c f&r% + zj G/l, - * * 1 Ymr 21, - f * , zp), j= I,...,p 

I=1 

Let the following conditions be fulfilled: 
a) +he functions Yi (yl, . . . . y,, zI, . . ., +,) can be represented in form( 2.2) 

-_(2* 4); 
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b) the functions Zj (yr, . . . , p,,,, .z~, . . . , zp) satisfy conditions of type 1 and 

zj (0, - - ., 0, 21, . . .,Zp) f 0 

I-q(?h*.,Yrn,Zl ,...,z,)14~~lhiilyjl, 
where Eij are sufficiently small positive constants. 

criteria for system (3. l), similar to Theorems 1 and 2. 

j=l,...*p 

In this case we can obtain 

E x a m p 1 e 1. Let the equations of perturbed motion be 

Y’ = --Y + Y5 + ZlP + y (Y, z1r * * .,4), f = 22, + za + z3 + 4 
(3.2) 

Zj’ = EjfZj(y, Zlra*.rZ4), i=i,sae,4 

(Z, = -p, x2 = Zl - 22, 2, = -42, + z2 - 2s - zg, ix4 = 52, + zs + 
223 + 2~~) 

In the investigation of stability relative to all variables of the unperturbed motion of 
system (3.2) a critical case arises when the stability and the instability of the unpert- 

urbed motion is determined by the form of the nonlinear terms. Let us consider the 

question of the asymptotic stability of the unperturbed motion of system (3.2) relative 

to variable y . We note that the criterion in [4] is inapplicable here. We make use 

of the results in Sects. 2 and 3 of the present paper. We introduce the new variables: 

p1 = 5, pz = ZIP. System (3.2), after reduction to the system of JA -form as in 

Sect. 2, appears thus: 

Y’ = -Y + YPl + pa + y (Y, Zl? . * *, z4) 
(3.3) 

c”1’ = -p, + 2, (Yc Zll * . -9 Z,)? Pa' = CL3 + 26 (Y, Zl, * .‘, 4) 

~3' = --6~2 - 5~3 + 27 (Y, ~1, . . ., ~4) 

Zj' = Zj + Zj (y* Zl* * * *,Z4) 

&=2-%+Z,+Z,+Zpr &= 5az,+2z,& 

27 = '? (622, + 2, + 24) + t-421 + 223 + 224) @, 

We assume the fulfilment of: conditions 1 and 2 by function Y (y, ~1, . . ., z,), con- 
dition b) by function Zj (y, zl, . .., z4) (i = 5, 6, 7)) and condition 3. Then, acc- 

ording to [4], the unperturbed motion of system (3.3) is asymptotically stable relative 

to variables Y, pll pz, ps, and, hence, according to Sects. 2 and 3, the unperturbed 

motion of system (3.2) is asymptotically stable relative to variable 9. 

N o t e. Let us consider the case when the functions Y i** (yr, . . . ,y,, zlr . 

. ., Zp) andzj (!/I, . . -, Ym, zl, . . . , z,)occuring in the right&and sides of system (3.1) 

are independent of variables z~+~, . . . , $, i. e. , the functions Y i* * and Zj 

have the form 

yi** = y,** (y1, . . ., y,, Zl, . . .,ZT) (3.4) 

zj = zj (91, * * * 7 Ynl, 21, - - *Jr) 

In this case, theorems analogous to Theorems 1 and 2 can be obtained under the ass- 
umption that the variables z,+r, . . . , z, of system (3.1) are arbitrary, i. e. , can 
be unbounded (but are z -continuable [2] ). Indeed, let the following conditions be 

fulfilled, with due regard to (3.4), for the right-hand side of system (3.1): 
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A) Yi** (0 , * . *, O,Zl, . . .,z,)rO, Z,(O,. . .,o,q,. . .,z,)=O; 

B) functions (3.4) do not contain terms linear in yi, . . . , yrn; 
C) the variables zi, . . ., z, of system (3.1) are always bounded, (the variables 

G+1, . e .,ql are arbitrary). 

Under conditions Asa - C) theorems analogous to Theorems 1 and 2 can be obtained by 
the method in [4,5]. 

E x a m p 1 e 2. Let the equations of perturbed motion be 

Y’ = -Y + zZz3 + Y (Y, 21) (3.5) 

z1’ = Z, (Zi), %z’ = -2% + Z, (Y, z1) 

z3 * = zz + 3% + Z, (Yt z1) 

We take it that variable z1 of system (3.5) is always bounded. We consider theques- 
tion of the asymptotic stability of the unperturbed motion of system (3.5) relative to 
variable Y . After the reduction of system (3.5) to the system of p -form as in Sects. 
2 and 3, we obtain the following system of equations: 

Y’ = -Y + p + y (Y, z1) 

p’ = CL1 + 24 (Y, z,), p1’ = -6p - 7P, + Z, (Y, z1) 

21 * = z, h), 33' = -23, + z3 (Y, Zl) 

33 * = 33 + 323 + z, (Y 1 z,), p = 23323 

(Z4 = 2z,z3Y + zS2Z3, Z, = -2z,z3Y + 3z,Y) 

We assume the fulfilment of: conditions 1 and 2 by function Y (y, .zl) andof condi- 
tions A) and B) by functions Z4 (y, zl) and Z, (Y, zr). Then, according to [4] and 

to sects. 2 and 3 of the present paper, the unperturbed motion of system (3.5) is asy- 
mptotically stable relative to y under the condition that variable ZI is bounded. 

4. Let Eqs. (1.3) of perturbed motion have the form 

dYi 
- = Yi (yly a . . 

dl 9 Ym) + f: hlZlr i =l,...,m 

1=1 

ClZ. 

-2 = Zj&, . . 
dt * 9 Ywl) + &A,z,7 j=i,...,p 

I=1 

(4.1) 

In contrast to Sects. 2 and 3 we do not require the boundedness of variables zi, . . ., 
zp of system (4.1) when investigating the latter. It is evident that the assumptions 

in CS] carry over completely to system (4.1). Krasovskii has investigated second- and 

third-order systems of form (4.1) in connection with the problem of motion stability 
in-the-large [6,7], We consider the system [S] 

Y’ = f1 (I/) + b,,s, + b,,% 
(4.2) 

21 l = fz (Y) + d,,z, + d12%7 22’ = f3 (Y) -t- ~,,~I + da,% 

We accept the fulfilment of the condition 

b&a - &&,a b 19 
b 11 - b&al - b,,d, 

(4.3) 
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Sufficient conditions were derived in [6], under which the unaimed motion of sys- 

tem (4.2) is stable in-the-large. The domain in which these conditions hold is called 
domain I’ . Let us consider the question of the stability in-the-large of the solution 
Y = zr = 2s = 0 of system (4.2) relative to varialbe Y and let us compare the 
stability domain obtained with domain r. 

We introduce the new variable p = b,,z, + bl,zs. Since condition (4.3) holds, 
in the new variables system (4.2) appears thus: 

Y * = fr (Y? + PV I** = f4 (Y) -t- kP (4.4) 

( f4 (y) = blJ2 (y) + b12f3 (y), k = hl’al;lhlldll = b11d1abt,b1ada8) 

and the behavior of variable Y of system (4.2) is completely described by system(4.4). 

The domain in which the un~~urbed motion of system (4.4) is stable in-the-large [7] 
is called domain r*. It can be shown that domain I’* is wider than domain I’, 

i. e. ) the domain of stability in-the-large of variable Y of system (4.2) is wider than 

the domain of stability in-the-large of all the variables characterizing the state of 

this same system. 

5. Let the equations of perturbed motion of a controllable system be 

where aik, bilr Cjkt dj,, hi, hj, Pi are constants and f (u) is a continuous iimc- 
tion sat~fy~g the condition 

CT f (cr) > 0 when 6+0 (5.2) 

In the investigation of system (5.1) we do not require the boundedness of its variables 
21, . . ., zp . Let us consider the problem of the absolute stability of the unperturbed 

motion of system (5.1) relative to variables Y,, . . . ,ym. This problem generalizes 

the wee-mown Lur’e problem [S]. 

Definition. The unperturbed motion of system (5.1) is said to be absolutely 
stable relative to Yr, . . ., ym if it is stable relative to yr, . . .,y,,, under any init- 

ial deviations and for any choice of function f (0) satisfying condition (5.2). 
Let us show that the problem posed can be reduced to the problem of absolute stab- 

ility of a specially chosen system of the same form relative to all variables, where the 
latter system’s dimension can be less than that of the original system. To do this, 

following [3] we introduce the new variables 

pi = bilzl + - . . + bipzpy i = 1, . . ., m (5.3) 
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(we assume that variables (5.3) are linearly independent; otherwise, from (5.3) we 
choose the pearly-~de~nd~t ones). 

Two cases are possible when such new variables are introduced. In the first, sys- 
tem (5.2) is reduced to 

‘Yi m 
ert= c aikyk i- f-k + f%f f6) 

k=l 

(5.4) 

i, e., the behavior of the variables characterizing the state of system (5.4) determines 
completely the behavior of variables y,, _ . . , ,tjm of system (5.1). Systems of form 
(5.4) are called systems of or. -form of the original system (5.1). In the second case, 
when system (5. I.) does not, after the introduction of variables (5.3), reduce to the 

p -form, by the scheme in [S] we can show that system (5.1) can always be brought 

to the p -form at a finite stage of repeating the procedure of introducing new variabl- 
es. The dimension of the system of p -form does not exceed that of the original sys- 

tem (5.1); to be precise, the following is valid. 

L e m m a. In order that the dimension of the system of p-form of system (5.1) 
equal N , it is necessary and sufficient that the rank of the matrix K= (B, DB, . 

* -3 DP-1B) equal &’ - m (here B = {bit, fil), and D = {dlj} are matrices 

of appropriate dimensions). 
Thus we obtain the following result, 

T h e o r e m 3. For the absolute stability of the unperturbed motion of system 

(5.1) relative t0 yl, . . .,$/m, it is sufficient that the system of p -form be absolut- 

ely stable with respect to all variables. when the rank of matrix K equals p , the 

problem being analyzed is equivalent to the Lur’e problem. 

Let us present an example of the effective use of the method indicated. This 

example shows it is possible to have automatic control systems that are not absolutely 

stable with respect to all variables, but can be absolutely stable with respect to apart 

of the variables, 
we consider the case when the matrix of the linear part of equation SyStem(5.1) 

has two zero roots, i. e., Eqs. (5.1) are 

f&/i m c a*kyk+hif(clf, i=l,...,m (5.51 
dt= 

k=l 

%/dt = nl (a), h&t = yd (6); d = c’y + @A _4 @aSa 

where y1 and yB are constants, c’ is a constant vector. System (5.5) hasa non- 
zero equilibrium position; therefore, its unperturbed motion cannot be absolutely stable 
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in all variables [9]. Let us consider the problem of the absolute stability of the un- 
perturbed motion of system (5.5) relative to yr,. . ., g,. For this we introduce a 
new variable 7~ = 13,~~ + &s, where 7 < 0 is a constant. The system of u - 
form appears as 

&Ii m 
dt= c uikyk+hif(b), i=i,...tfn 

k=l 

(5*6) 

The well known absolute stability conditions for system (5.6) (see [9] ) are the stabil- 
ity conditions for system (5.5) relative to y,,. . . , Ym. 

The author thanks V. P. Prokop’ev under whose direction the work was carried out. 
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